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Semiparametric models, models which incorporate both parametric (finite-
dimensional) and nonparametric (infinite-dimensional) components, have
received increasing use and attention in statistics in recent years. This paper
reviews developments in this very large and rich class of models which spans
the middle ground between parametric and nonparametric models. Attention is
devoted to a preliminary classification of such models with comments on recent
work, to lower bounds for estimation, to two potentially useful methods for con-
struction of efficient estimates, and to open problems.

1. INTRODUCTION

Models for phenomena involving randomness play a key role in statistics. If
P,; denotes the collection of all probability distributions on a sample space X
of the observations X, a model P is a subset of P,,: thus we assume in con-
structing a model P that X has a distribution P in P, and we write X=P P.
The sample space X is the set of all possible observations.

A statistician uses the observations X to make inferences about the ‘true’
probability distribution P, and hence about real-world phenomena in question.
A common form of inference is point estimation. For example, if X represents
the life expectancy or survival time of an individual who has been given a new
medical treatment, the statistician may be interested in using a sample of such
individuals to estimate w(P)=P(X=1), the probability of survival beyond ¢
time units. The choice of a model P can have a major effect on inferences
about »(P): If the model P is too small, the statistician runs the risk that the
model will not contain the ‘true’ P, and the consequent price is bias in estima-
tion of »(P). In this case the model is not sufficiently large to be realistic and
may fail to capture the essential features of the phenomena in question. On the
other hand, if the model P is too large, the statistician may find himself in the
position of estimating too many parameters from too little data. This tradeoff
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between realism and parsimony is an ever-present theme in statistics; for
interesting discussions of some aspects of model-building see Chapters 2 and 4
of Cox and SNELL [23] and STONE [74].

Parametric models Py={P;:0€0} with O CRY for some d play a dominant
role in classical statistical theory. Such models, with a finite-dimensional
parameter space ©, form the basis of much of classical statistics. A difficulty
with such parametric models is that typically a parametric model Py is a rela-
tively small subset of P,;, and hence the ‘true’ distribution P of X may not be
contained in Py.

One approach to this difficulty is the completely nonparametric approach:
assume only that PeP, or a slight restriction of P, requiring only some
smoothness or monotonicity assumptions. While this approach seems to be
feasible when the dimensionality of the sample space is small, it fails to take
advantage of structure in the phenomena being modeled and begins to run
into difficulty when the dimensionality of the sample space (and hence of the
parameter space, P, itself) is large.

A compromise strategy which gains in model realism and the flexibility
needed to make use of the larger data sets which are increasingly available is
the semiparametric approach: assume that some aspects or components of the
model are parametric or finite-dimensional, while other aspects or components
are allowed to be nonparametric or infinite-dimensional. Then the resulting
semiparametric model P is typically of the form

P = {Py;:0€0, GeG}

where ® CRY for some d and G is some (large) collection of functions. We also
write

P= {Pgla = (0|,02) with 0| E®| CRd, 02 E@z},

where 0, is a collection of functions.

This semiparametric approach has proved to be very useful in a wide range
of problems, and promises to play an increasingly important role in statistics.
Our object here is to survey this extremely rich and flexible class of models
(Section 2), and to briefly review the developing inference methods with
emphasis on lower bounds for estimation and construction of efficient esti-
mates of the parametric component of such models (Section 3 and 4). The sur-
vey of models and review of inference methods may be read independently of
one another. The final section discusses open problems.

The notion of a semiparametric model is very general, and is already being
used, at least implicitly, in situations involving observations which are not
independent and identically distributed (iid). For simplicity, however, we res-
trict attention here to the iid case: throughout this paper X, ..., X, are iid
P €P where P is a parametric or semiparametric model.



2. CLASSES OF SEMIPARAMETRIC MODELS

Little effort has been made to classify or categorize semiparametric models.
While such an effort may be premature, it may also help to identify related
models and aid in developing methods to apply to new problems. The follow-
ing scheme should be regarded as provisional and temporary.

The classification of models given here has two fundamental categories:
basic models, and derived models. The basic models consist of exponential
family models, group models, and transformation models. The derived models
include regression models, convolution models, mixing models, censoring
models, and biased sampling models. Although this scheme is both redundant
and possibly incomplete, it includes all the semiparametric models with which
I am now familiar. The rest of this section elaborates on these categories, and
provides examples of the models of the various types with some brief com-
ments on recent work.

2.1. Basic Models

The following basic models serve as building blocks in the construction of
semiparametric models.

2.1.1. Exponential family models. (A). These are familiar parametric models
with density (with respect to some measure m)

k
p(x.0) = c(@exp( X Q)T (x))h(x)
i=1

for fc®CR*, xeXCR?. While these are themselves completely parametric
(finitely dimensional) models, they serve as building blocks for many interest-
ing semiparametric models.

2.1.2. Group models. (B).

(1). The classical parametric model of this type is obtained as follows: suppose
that Y=G=P,, a fixed distribution on X, and let V denote a group of
(one to one) transformations on X parametrized by #e®C R%. If vyeV,
let X=vy(Y)==P4 for 0€0.

Examples:

(a) Location. X=RY, v4(x)=x +6 with §cR?, and Py=Py(-—9).

(b) Elliptic distributions. X=RY, vo(x)=60""'/% x where 0 is positive definite
and symmetric; G=P, is spherically symmetric on R?. Then
P={Py:0€0} is the Py-family of elliptic distributions.

(c) Two-sample models. X=X, XXy, V=V, XV, where V, is a group of
transformations on Xg, 0=(i,r)e@y X 0y=0, Y=(W,Z) with W,Z=P,
independent, and X =(v (W),v,°v,(Z)).



(2). By letting the distribution Py in (1) range over some large class of proba-
bility distributions G small enough to still allow identification of 8, or at
least some important functions of 8, yields a semiparametric model

P={P4;:0c0,GeG}.

Examples:

(a) If X=R' in 1(a) above and G is the family of distributions symmetric
about 0, P is the classical symmetric location family.

(b) If X and © are as in 1(b) above and G is the family of all spherical sym-
metric distributions, then P is the family of all elliptic distributions; see
e.g. BICKEL [6].

(c) If X and © are as in 1(c) and G is arbitrary, then » is still identifiable; see
STEIN [71] or PFANZAGL [64].

(3). Classical nonparametric statistical theory uses transformation groups
which are not parametrizable by a Euclidean space; for example, all con-
tinuous monotone transformations from R to R. See LEHMANN [51] page
24 and 25 for ‘semiparametric subgroups’ of the large group and note that
examples 2(a) and 2(b) are of this type. A wealth of other ‘semiparametric
group’ families are undoubtedly possible.

2.1.3 Transformation models. (C). These models typically map (0,P)—>Py
where 8c® CR* and PG, a collection of probability distributions on X. The
key feature is that the map Py =y(8,P) acts on P, or some function that is
one-to-one with P, rather than on X as in the case of a group model.

The classical example of this type of model is that of a family of ‘Lehmann
alternatives’ defined as follows (see LEHMANN [50]): Let X=R', suppose that
Y=G and let {B(-,8):0c®CR*} be a family of monotone transformations
from [0,1] to [0,1] with B(0,8)=0, B(1,0)=1 for all §€©®. Then X=Py¢ has
df (distribution function) Fy g(x)=B(G(x),6). Here are some particular cases.

Examples:

(a) Ba(p,0)=l—(l—p)0 with 0<<@<oo. This yields the proportional hazards
model: Ap(x)=0Ag(x) where Ap is the cumulative hazard function
corresponding to F; see LEHMANN [50} and Cox [22].

o = . .
b) By(p.0) = = th 0<f<oo. Thi 1ds th
(b) By(p.0) (= 1+0u1—p) " wi 0 s yields the
proportional odds model
F)  _, Gx)
1 — F(x) 1—-Gx)’
see BENNETT [2].
(c) B.(u,0,»)=1—[1—wflog(1—p)] '/*, 0<v<oo, §>0. This yields the semi-
parametric Pareto model suggested by CLAYTON and Cuzick [19]. Note




that B.(u,0,v)—B,(1,0) as v—0 while Bennett’s B, is related to Clayton
and Cuzick’s B, by

B.(1 — exp(——£—),6,1) = B, (.0).
l—p

These three models can all be written in the form
h(X)= —log(d) + € (D

where h (x)=logAs(x)=1log[ —log(1 —G(x))] and ¢ has the distribution:
(a) F(x)=1—exp(—e*) (extreme value);

(b) F(x)=1/(1+e" ") (logistic);

(¢ F(x)=1—1/1+wx)"/” (Pareto).

Because of the generality allowed for the transformations 4, rank methods and
partial likelihoods play an important role in analyzing these models. Note that
(1) yields a transformation family linear model if §=exp(yz), and shows that
these models can be viewed as special cases of a type of model involving
smooth transformations of both X and z considered by BREIMAN and FRIED-
MAN [11]; see 2.2.1 below and DoKsuUM [24].

2.2 Derived models

The following classes of models are all derived from the basic models given
above.

2.2.1 Regression models. (D). Given a basic model of one of the three types
described above, there is a straightforward recipe for constructing related
regression models:

I. Start with an exponential family, group or transformation model

P={Py;:0c0,GeG) where § is the finite-dimensional Euclidean com-

ponent of the model and G is the nonparametric or infinite-dimensional

component of the basic model.

Suppose that Z=H on RY.

3. Given Z =z, replace 8 (or a component thereof) in the basic model by a
semiparametric regression function r(y,z) taking values in © where
yeI'C some R*. Different forms for r ranging from parametric to non-
parametric regression models, with many interesting intermediate semi-
parametric forms, are possible. For example:

(a) Linear model: r(y,z)=vyz;

(a’) Exponential linear model: r(y,z)=exp(yz);

(b) Nonlinear: r(y,z)=ry(y,z) for a fixed known nonlinear function rg;

(c) Nonparametric: r(y,z)=r(z), with r smooth;

(d) Semiparametric: r(y,z)=yz, t+r(z;), where z=(z,,z;), and r is
smooth;

N



(¢) Projection pursuit: r(y,z)=r(yz) where |y| =1 and rR'SR' is
smooth;

(f) Signal-noise: r(yz) where rR'SR' s periodic with period 1 so that
v is a frequency parameter.

Combining various types of regression functions illustrated by (a) - (f) with the
basic models A, B or C yields a rich collection of regression models, includ-
ing parametric. semiparametric, and nonparametric models. STONE [74] gives
an interesting survey and further references. A few selected examples with
brief comments concerning recent work follow.

Examples:

(a)

(b)

(©)

(d)

(e)

(f)

Combining basic model A with the regression model D(a) yields linear
exponential family regression models; see e.g. LEHMANN [51] Chapter 3,
pages 196 - 207.

Combining the basic model Bl(a) where Py is normal with D(a) yields
classical parametric normal theory regression models; the extension to
B2(a) yields semiparametric linear regression models with arbitrary (sym-
metric) error distributions.

The basic model Bl(a) (with P, a fixed distribution on R'; e.g. normal)
combined with the semiparametric regression model D(d) leads to a very
interesting class of regression models introduced by ENGLE, GRANGER,
Rice and WEIss [26] to study effects of weather on electricity demand,
and by WaHBa [79]. This model has one nonparametric component, the
smooth regression function r. Generalizations with two nonparametric
components by allowing the error distribution to be arbitrary are also of
interest. A special case has been studied by Sctick [70]. while STONE [74]
discusses a spectrum of related regression models.

Combining B2(a) with D(e) leads to a model related to projection-pursuit
regression; see FRIEDMAN and STUETZLE [27], STONE [74], and HUBER [37].
Combining Cl(a) with D(a’) yields Cox’s (1972) proportional hazards
model. Many variants on this model are possible and deserve further
exploration. Replacement of the exponential with some other (fixed)
non-negative function has been considered by PRENTICE and SELF [67],
while Cl(c) combined with D(a’) has been explored by CLAYTON and
Cuzick [19]. TiBSHIRANI [76] considers a version of Cox’s model with the
linear function in exp(yz) replaced by a sum of smooth but otherwise
arbitrary functions 2{‘ Ir,-(:,-). See 2.2.2 below for related mixture models
involving unobserved covariates.

Combination of Bl(a) or B2(a) with D(f) yields a semiparametric ‘signal
plus noise’ model which extends classical parametric signal plus noise
models. For the latter, see IBRAGIMOV and Has'MINSKII [38].
MCcDONALD [56] has some interesting preliminary work on semiparametric
extensions. These models are of interest in astrophysical applications; see
e.g. LAFLER and KiNMAN [44] or STELLINGWERF [72].



2.2.2 Mixture models. (E). Mixture models can usually be viewed as the result
of unobserved heterogeneity as follows: suppose that X =(Y,Z) has a distribu-
tion of the form

Pyou(YEA,ZEB) = /BP,,_G(YeA | Z =z)dH(z).

Then if we can only observe Y, the observations have the mixture distribution

Pou(YeA)= [Poo(YEA |Z =z)dH (z).

Examples:

(a)

(b)

()

Paired exponentials. Suppose that (Y=(Y,Y,)|Z =z)= (exponential
(z),exponential(8z)):

[ 12) = 0zexp(—(2yy + 0292 ) pp.ccr (¥ ) ljo.cor (72)
and suppose Z=H on R*. Then

0
SOESfon()= [ 0z exp(—z(y1 +0y2))dH (2);

see e.g. LINDSAY [53]. Here 6 is a parametric component and H a non-
parametric component of the model, and the mixed distribution is
parametric while the mixing distribution is nonparametric. Generaliza-
tions of this model, including regression type models, have been studied
and advocated for use in modeling micro-economic data by HECKMAN and
SINGER [35].

Dependent proportional hazards or fraility models. Suppose that
(Y=(Y,.Y;,)| Z =2z) has joint survival function

Po(Y =y Y =2p, | Z =2)=[1 = Gi(OF[I — G202)F
with G =(G,,G;) and suppose that Z=Gamma(r,A). Then with §=(».A),
A
A+ A+ A

where A;=-—log(1—G;), i=1,2. In this case the mixed distribution is
nonparametric while the mixing distribution is a parametric family. This
model, which serves as an alternative to (a), has been studied by CLAYTON
[16] and OAKEs [63], and has been generalized by GiLL [28]. Related
regression models are discussed by RIDDER and VERBAKEL [68] and
ELBERS and RIDDER [25].

Errors in variables models. Suppose that X =(Y,Z) with
Y| =Z7Z+ €
Yz =a+ BZ + €

Pyoc(Y =y, Y,=2y,) =



where Z=H (non-Gaussian) and e=(¢;,&;)=N(0,2). The resulting mix-
ture model is an errors in variables regression model. Consistent maximum
likelihood estimates were obtained by KIEFER and WOLFOWITZ [42], but
lower bounds for estimation of (a,8) together with asymptotically efficient
estimates attaining the bounds were first obtained by BICKEL and Ritov
[91.

(d) If (Y |Z =z)= exponential (z) and Z=H, then

Py(Y=y)= j;)wexp(—yz)dH(z).

Estimation of H via nonparametric maximum likelihood methods in this
and more general situations has been considered by LAIRD {45] and
JEWELL [39]. While the estimates are known to be consistent, little is
known about the efficiency of the estimates or their rate of convergence.

Other results concerning mixing models and efficient estimation have also been
obtained by LAMBERT and TIERNEY [46], [47], and by HAs’MINSKII and IBRAGI-
MOV [34].

2.2.3 Censoring models. (F). These models are derived from other models of
one of the above types as follows: Suppose that X=Py P, and suppose that
T is a many-to-one function on the sample space X of X. Then we can observe
only X =T(X)=Pyc.

Examples:

(a) Mixing. The mixing models of E are censoring models with
X =T(Y.Z)=Y.

(b) Random right censorship. In this type of censoring, which has received
much  use in  survival  analysis, X =(X;.X3)=T(X, X))
=(X, A\ X3.ljx,<x,)- Random right censoring meshes extremely well with
Cox’s proportional hazards regression model as discussed in D(e). On the
other hand, however, this type of censoring can make estimation quite
difficult. For example, estimation for the linear regression model D(b)
with arbitrary right censoring of the dependent variable has been con-
sidered by MILLER [61] and by BUCKLEY and JaMEs [13]; see HALPERN
and MILLER [60]. RiTov [69] has, in spite of the difficulties, computed
information lower bounds and produced asymptotically efficient estima-
tors achieving the bounds. TIBSHIRANI [75] considered a version of this
censored regression model with the linear (parametric) regression function
replaced by a smooth regression function.

(c) Convolution. Here X'=T(X,,X,)=X,+X, where X; and X, are
independent. The traffic model of BRANSTON [10] is a model which results
from this convolution type of censoring combined with a simple mixture
model.



2.2.4 Biased sampling models. (G). Suppose that X=Pg; <P, a semiparametric

model. Then suppose that K;(x), i=1, ,s is a collection of known non-

negative biasing kernels and that A, i= 1, ...,5 is a probability distribution

on {I,...,s). Then the biased sampling distribution corresponding to Py,

K=(K,,...,K),and A=Ay, ... ,A,) s

/, K(X)Poa(dX)
PooA(Xe€A Ll =i)= i ()
S Ki)Py, G<dx)

fori=1,...,s Here are some examples of this type of model.

Exampiles:

(a) Vardi’s selection bias model. Suppose that Pys=G and K, ... K, are
biasing functions with f KidG<oo for i=1,...,s, and \;=0 satisfy
2‘;__1)\,~= [. Then

j K,dG
Poa(XeA, ] =)= -4 Aoi=1...,s
[x K,dG

VARDI [78] gives a condition which guarantees existence of the non-
parametric maximum likelihood estimate of G. The particular case with
X=R', K|(x)=1,K,(x)=x, which involves the length-biased distribution

{ ydG(y) / p correspondmg to G was studied by VARDI [77], and the

Urther special case with Ay =0=1—A, was considered earlier by Cox [21].
Consistency, asymptotic normahty, and efficiency of Vardi’s non-
parametric maximum likelihood estimator are addressed in a forthcoming
paper by GILL and WELLNER [29].

(b) Choice-based sampling models. Suppose that X=(Y,Z), where Z=H is a
vector of covariates, and (Y |Z =:z)=Multinomial,(1,p(8,z)) (where k
denotes the number of cells and the number of trials is 1); we will write
[Y =y] for the event that outcome y occurs, y =1, ....,k. A frequently
used model for the p’s is the multinomial - logit model with

exp(0 z)
2 exp(f, :z)

Py(Y =y|Z=2z)=p,0,2)=

but in any case this part of the model is parametric; the nonparametric
part of the model is G. To get a ‘choice-based sampling model’, let
Ki(x)=Ki(y,z)=1p(y), i=1,...,s where Dy, ..., D, are known subsets
of {1,...,k}. Then the biased sampling model (2) becomes

Sl 0)Pe(Y =y | Z = 2)dG(2) \
k i.

[ S b 0)Po(Y =y |Z =2)dG(2)

r=t

Pog(Y =y, ZeB I =i)=

10



This type of model has received considerable use in econometrics; see
CossLETT {20] for some history and further references. Estimation for this
model was considered by MANsKI and LERMAN ( Econometrika 45 (1977),
1977-1988). The efficiency of their estimators of § and generalizations were
treated by COsSLETT [20]. In general the ‘choice functions’ or biasing ker-
nels may depend on both y and z; see MANSKI and MCFADDEN ( Struc-
tural Analysis of Discrete Data (1981), MIT Press).

(¢c) Truncated regression models. Suppose that X =(Y,Z) with Y =0Z +e¢
where e=G with density g and Z=H are independent. Thus the basic
semiparametric model is a linear regression model with unknown error
distribution G. If s =1 and K(x)=K(y,2)=1( «,,1(v) Where y, is a fixed
constant, then

Sl a8 — 85)AH ()
[ ., 80— 0daH(E)

This truncated regression model has been investigated by BHATTACHARYA,
CHERNOFF, and YANG [5]. Motivated by a controversy in astronomy con-
cerning Hubble’s law, they constructed \/;-consistent estimators of the
regression parameters 6. Further results for this model have been obtained
by JEWELL [41], who also gives additional examples. JEWELL [40] has also
considered estimation for generalizations of this model with s=2
corresponding to stratified sampling on the dependent variable Y.

Py(YeA,ZeB) =

3. BOUNDS FOR ESTIMATION

Lower bounds for the variances of estimators play an important role in statisti-
cal theory, setting a baseline or standard against which estimators can be com-
pared. In their classical form such bounds assert that any unbiased estimator
6, of 8 has variance no smaller than (n/(8)) '=b(8) / n:

Var0[0,,]> —l

In other words b(6) in is the smallest variance we can hope for in an unbiased
estimator 0 of 8. If §, is an estimator which asymptotically achtives the bound
(in the sense that \/1(0 —8)—4N (0,b(6))), then we say that 6, is asymptoti-
cally efficient. If the statistician uses an estimator 0 which is inefficient, then
he has not used the data to best advantage and is essentlally wasting observa-
tions. Hence if 0 is another estimator with \/—(0 —6)—4N(0,a(6)) where
a(0)=b(#) necessarily, then the limiting ratio of sample sizes VXthh ylelds
equal standard deviations (and hence also equal variances) of 6, and 0,, is
called the asymprotic relative efficiency e, of g, with respect to 0,,, evidently
e, =b(0) /a(@)<1. If the estlmatorb0a has asymptotic relatlve efficiency 1/2
relative to an (efficient) estimator 4, and the estimator 0 requires n, =100

11



observations to yield a given variance, then n,=200 observanons will be
needed to achieve the same vanance using the inefficient estimator 0,,, half the
data are ‘wasted’ by the use of 0 Thus in the search for ‘good’ estimators and
other inference procedures, statisticians are interested in answers to the ques-
tions: A. How well can we do? What are the lower bounds for estimation in

the model at hand? B. How can we construct efficient estimates, i.e. estimates
which achieve the bounds?

Our aim in this section is to briefly survey classical (Cramér - Rao) and
modern (Hajek - Le Cam) bounds for estimation in ‘regular’ parametric
models. The Hajek - Le Cam approach has led to the development of lower
bounds for estimation in nonparametric and semiparametric models. Bounds
of this type have been established by BERAN [3], KOSHEVNIK and LEvIT [43],
LEVIT [52], MILLAR [57], [58], [S9]. PFANZAGL [64], and BEGUN et al. [1]. We
give a brief introduction to these bounds for semiparametric models at the end
of this section. A thorough treatment will be given in the forthcoming mono-
graph by BiCKEL, KLAASSEN, RiTov, and WELLNER [7].

3.1. Cramér - Rao lower bounds
First consider the case of a ‘regular’ parametric model: suppose that
D ST X, are iid PpeP={P;:0c0} where ®CR" is open, that P is dom-

inated by a (sigma-finite) measure g on X, and let p(~,0)5% for #®. Then
the classical log-likelihood of an observation X is

(6, X)=logp (X.0),
the scores vector 1 is

1
p(X, 0) a6,

and the Fisher information matrix for @ is
1(6) = E4[i0.X)i(6.X)"].

Assume that 1 (0) is positive definite so that 1(8) ' exists.
One form of the classical Cramer-Rao mequahty for unbiased estimates
T0 of a'8, where a is a fixed vector in R, i

6. X)=vI(6.X) = p( 0), . .-,a;;ip(Xﬂ))T-

nVaI'()[aTan]Z‘ITI(a) a= Sul?ﬁo))_b— v

If we focus on estimation of the first component 8, €R' of 4, it follows
immediately from (1), the definition of I(6), and standard L,-projection or

12



regression theory that
2

y, bi m
nVarg[Hl]BEB'B bT1(0)b ()] (2)

I

ll’lf ‘Ep[i| - C2i2 ... Cdidlz

ceR’ W€y

| _ 1
11(0) — 1,015 0 (8)  11,(6)

where

B 1(8) 112(0) L '@ 1'*9)
I&= I(0) 1x(8))° 1® 1@ 12

denote the partitions of /() and [ )N corresponding to the partition of
6—(86,.67)" with 8, = (02, ...,8,)". Thus when 6, is the parameter of interest
and 8, =(0,, . . .,0,)" are nuisance parameters, the effective information I ())
for 6, is

. -%2

5@ =1y — Ialp'Iy = Egl)), (3)
where the efficient score function i for 0, is

b =i — Taln'h =1 — TG, |[iz]) (4)
and the efficient influence curve i, for estimation of 8, is

L= 'L, )]
so that

P 1N
Egl)y=11(8) " =17().

It is easily seen that the effective information I}, for @, is just the squared
length of the component I, of ll which is orthogonal to Iy, . .. ,ly in Ly(Py):
in other words, the efficient score function is obtained by subtractmg from 1,
its projection H(l, I[l;_]) Iy l2 on the space [l2] spanned by b, . . ld in
Ly(Pg).

If the nuisance parameters 6, =(6,, . . . ,8,)" are known, the bound (2) may
be replaced by a

- 1
anrg[0|]> 1“(0).. (6)

and, of course,

10O)=110) = 1y — 120" 1
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where equality holds if and only if
1|2:1L =0 oriff i|_Li2,...,id in Lz(Pg) (7)

Thus lack of knowledge of 8,=(6,, . . . ,0,)7 decreases the information for 8,
unless (7) holds; in this case the lower bounds (2) and (6) agree, suggesting
that 8, can be estimated as well when 6, is unknown as when 6, is known.
This possibility was recognized by STEIN [71] in a paper which initiated the
theory of adaptive estimation.

3.2. Hajek - Le Cam lower bounds
Two different but closely related asymptotic formulations of the classical
Cramér - Rao lower bounds have proved useful: One is the convolution-type
representation theorem of HAJEK [32] and LE CaM [48] which has been further
developed and applied by BERAN [3], [4] and MILLAR [59]. The other is the
local asymptotic minimax approach; see HAJEK [33] for a nice exposition and
history, MILLAR [58], and LE Cam [49] for additional remarks.

Both types of lower bounds are formulated in terms of locally asymptotically
normal families: Suppose that X=(Xy,...,X,)=P,y has density p,(-.0).
6cO®CRY, and set -

1,(6) = logp,(X.6).
If 6,=0-+hn"'/2, so that

ln(on) - ln(g) = log[pn(f*an)/pn(iﬁa)]ﬁ

then P={P, 4:0€0} is locally asymptotically normal (LAN) at @ if there is a
vector of L,(Pg) functions l,,(ﬂ) and a nonsingular matrix /() such that, with

L0, — L,(0) = L, h — 3 hTI@)h + R,(6.h), (8)

it follows that, in P, g-probability,
(i) R,(8,h)—,0 uniformly on bounded #-sets, and
(i) 1,(8)—4N(0.1(8)).

Thus l,,(0,,)—l,,(0)—>dN(—%02.02) with 6?=hTI(6)h. In ‘regular families’ P
(with iid observations) i,,(0):n 1/23n_1(8,X;) where 1 is the scores vector
(for n =1) and I(#) is the information matrix. -

Because of our interest here in the parametric component § of a semi-
parametric model P={P,;}., we formulate versions of the convolution and
asymptotic minimax bounds for the first component 6, of 6.

A sequence of estimators Ty, of 8, is regular at 8 if, under P4

Vn(T\, — 01)—aT)

for every 8,=0+n '/2h where the distribution I(T) of T, does not depend
on h.
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THEOREM | ( HAJEK, 1970). Suppose that P is LAN at 0 and that T, is a regu-
lar estimator with limit distribution 1{T ). Then

T| EZ] + W| (9)
where Z =N (0,1 / I},(8)), 1, (0) is as in (3), and W is independent of Z,.

Thus any regular estimator 7, of §, must have a limit distribution which is at
least as dispersed as N(0,1 /1 11(), and it makes sense to call a regular esti-
mator T, asymptotically efficient if it converges in distribution to Z,; i.e. if
W,=0in (9).

Now suppose that w:R' >R " satisfies:

(i) w(x)=w(—x) for all xeR';

(i) w(0)=0, w(x) increases in x =0;

(iii) Ew(eZ)<oo for all 0>>0 where Z=N(0,1).

THEOREM 2 (HAJEK, 1972). Suppose that P is LAN at 8 and that w satisfies (i) -
(iii). Then, for any estimator T\, of 0;,
im liminf _ sup  Eqw(Vn(Ty, —01,))=EW(Z,) (10)

M—o n—oo \nll, -0l<M

where Z,=N (0,1 / I,(8)) as in theorem 1.

If the uniformity in 4 in (i) of the definition of a LAN family is relaxed to just
pointwise convergence, then theorems | and 2 continue to hold, but the
bounds may not be attainable. Furthermore, if attention is restricted to regular
estimates, then (10) holds without the supremum on the lefthand side.

3.3. Bounds for semiparametric models
The Hajek-Le Cam convolution and asymptotic minimax bounds stated above
for a parametric model Py continue to hold in a wide range of regular non-
parametric and semiparametric models. All of the extensions make use, in
some form, of the rangent space P (at (6,G)) for the model P. For a parametric
model P, the tangent space Py (at §€©) is just the linear subspace [l;, . . ., 14}
of L,(Py) spanned by 1,...,l;. For a semiparametric  model
P={Py;:0c0CRY,GeG}, the tangent space PCLy(Pyg) is simply the set of
all possible score functions of one-dimensional regular parametric submodels
(at (8,G)).

For 8,€0,G,€G, let Py and P; denote the submodels of P with G =Gy
and §=4, respectively:

P,,E{P0~G|,EP:0E®}, p(;E{Pgu'GEP:GFG}.

If P, and P denote the corresponding tangent spaces, then Py ®P; CP and
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typically equality holds. Here Pg plays the role that [l, . . . ,I,] played for the
parametric model Py, and the efficient score function for 8 extending (4) is:

Ip =l — TI(lg | Pg) (1

so that i;_LPG in L,(Pg ), and the effective information for @ in the model P is
- .‘.tT

I (6) = Eg(llg ). (12)

In the special case when lg=i0 Ll:—‘C;. then " (8)=1(0)=E 0_G(ioi;) and adapta-
tion to G is possible; this is the situation emphasized by STEIN [71] and BICKEL
[6].

Now versions of theorems 1 and 2 for the parametric component § of the
semiparametric model P continue to hold with 6, replaced by 8 and 1 / I}, (6)
replaced by I'(8) ' where 17(8) is given in (12); see KOSHEVNIK and LEVIT
[43}. Levit [52], BEGUN et al. [1}, and PFANZAGL [64], [65]. A complete treat-
ment will be given in BICKEL, KLAASSEN, RiTOV, and WELLNER {7].

4. CONSTRUCTION OF ASYMPTOTICALLY EFFICIENT ESTIMATES: TWO APPROACHES
Suppose that P={P ;:(0,G)eOXG}= {Py:0=(0,,0,)c0, X0,} with ©,=G
is a ‘regular’ semiparametric model. A first stage in analyzing the model is to
calculate scores for 8 and information lower bounds as outlined in Section 2
above if possible. A second step is to construct estimators (6,.G,) which are
Vn -consistent. A third stage is to find estimators (8,.G,) of (#,G) which are
efficient in the sense that they achieve the information lower bounds (perhaps
in the weakened sense of convergence in distribution for fixed (4.G) rather
than locally uniformly as required by the definition of regular estimates given
in Section 3). .

Two classical methods of constructing asymptotically efficient estimators 8,
in regular parametric models are the methods of maximum likelihood estima-
tion and Bayes estimation; see LEHMANN [51] and IBRAGIMOV and HAS'MINSKII
[38]. though, as LEHMANN makes clear, the emphasis in likelihood estimation,
even in parametric models, should be on the scores and score equations rather
than on maximizing likelihoods per se since the scores often lead to efficient
estimates even when likelihoods themselves are unbounded.

Our aim here is to outline two useful approaches to the construction of

asymptotically efficient estimates of the parametric part # of a semiparametric
model P.

4.1. Method 1: Efficient score equation

Suppose that it is possible to calculate the efficient score function 1, for 8.
L=k —Ioln'h =1, — I, “"a:)

and the effective information

I} (0) = Eo(i)).
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Furthermore, suppose that 5,, s a \/;-consistent estimator of 6,
\/;(0,,—0) = Op(1). Then define 8, to be either a solution of the efficient
score equation

n .x A —_
2]](0,,,,02,,,/",) = O,
i=1
or a one-step approximation thereof:
l P .
;2:’ Ill(on’Xi)

éln :-éln + . —
Ill (011)

(H

— 1 n . _
= 01/1 + 72, ‘l|(0,,,X',~)

where 1, is the efficient influence curve for 6,, see (3.5). Additional smoothing
may also be required in forming the sums in (1), but we have omitted it here
for simplicity. Once an efficient estimator 8y, of 6, is found, method 2 can
often be used to construct an efficient estimator of 8,.

While no general theorem yet exists, the estimator 6,, defined above (or
variations thereon involving suitable smoothing and truncation) has been
shown to be asymptotically efficient in several important problems, a notable
example being the errors in variables models studied by BICKEL and Ritov [9}.
Roughly speaking, the fact that 1, is orthogonal to b, . .. ,1;, the scores for 6,
permits the use of an inefficient estimator 65, to estimate out the ‘nuisance
parameter’ 6,. This should be contrasted with solving (or approximating by a
one-step solution)

Zil(al.aln) =0
i=1

for #,, a method which is known to produce inefficient estimates of 8, in gen-
eral; see e.g. GONG and SAMANIEGO [30].

The main drawback of the method is that it requires calculation of the
efficient score function l;. Thus the method depends heavily on being able to
calculate projections onto {l;}= Py, =P, which often neces§itates calculation of
the inverse of the information operatorig_i;:l ;. When i, =i, ) i, is orthog-
onal to [L]=Py, then ‘adaptation’ with respect to 6,=G is possible, and
method 1 becomes essentially the method used to construct efficient estimates
in this case; see e.g. STONE [73] and BICKEL [6].
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4.2. Method 2: Efficient estimation of 8, for known 6,

Now suppose that an efficient estimate 8,, of 6, is available if 0, is known. We
denote this estimator by 6,,(8,) because it depends on the ‘known’ value of 4,.
Substitution of this estimate of 8, into the ordinary score for 6, (as if 8, were
known and equal to 6, yields the ‘condensed’ or ‘concentrated’ score equation

S1(6),02,(8). X)) = 0
i=1

which we can solve for §;=#,. Or, if 5,,, is a Vn-consistent estimate of ;. a
one-step approximation thereof:

Ly = = =
; 2 Il(aln-02n(0ln)a/\/j)
0ln = aln + — 5 (2)

L&es 2 2 o
;le(almoi’.n(aln))
oy’

as in the case of (1), more smoothing may be needed in forming the sums in
(2), we have omitted it here for simplicity. This is a frequently used device in
parametric models, but the method is equally useful for semiparametric
models. While no general results concerning the estimator (2) seem to be
known, this method has been used by Ritov [69] to construct efficient esti-
mates for censored regression models.

5. PROBLEMS

Statisticians have a large, well-stocked tool-box for dealing with classical

parametric models, and a growing companion set of tools for handling com-

pletely nonparametric models. The choice of tools for dealing with the rich
middle ground of semiparametric models is, however, still relatively limited,
and the few available tools are not all well suited for the job. Many important

problems remain. Here is a partial list: o

(a). Calculation of lower bounds. 1f the projection II(ly | Pg;) in, Section 3 can
be calculated, then so can the efficient score function lg, the effective
information I7,(6), and the efficient influence curve 1. In many models
this projection is simply a conditional expectation, and hence can be cal-
culated easily; but in other models such as the dependent proportional
hazards model of 2.E(b) the projection calculation is apparently intract-
able. More systematic methods, possibly involving iterative, numerical
techniques, are needed.

(b). Construction of efficient estimates. HUANG [36] has made a preliminary
study of method 1 outlined in Section 4, but general results concerning
the asymptotic efficiency of methods 1 and 2, or variations thereof involv-
ing more smoothing, are still needed. Other methods including minimum
Hellinger distance estimates, minimum Kullback-Leibler discrepancy esti-
mators, and maximum-likelihood estimators obtained via EM-algorithms
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(c).

(d).

(e

(f).

all need further development and sharpening in the context of semi-
parametric models. Efficient estimates are still unknown for many of the
models given in Section 2.

Identifiability and regularity criteria. For many semiparametric models,
further work on identifiability and conditions for regularity of submodels
is still needed before work on estimation can get underway. For examples
of such studies, see the papers by HECKMAN and SINGER [35] and ELBERS
and RIDDER [25] concerning identifiability issues for the models of 2.E(b)
and 2.E(c). Classical regularity investigations of translation and
parametric models, which carry over to many group models are given by
HaJex {31], [33].

Hypothesis testing. As yet no adequate theory of hypothesis testing exists
for semiparametric models. One type of testing problem concerns testing
hypotheses within a nested family of semiparametric models: for example,
consider testing A, =yA, for some 0<y<<oo in the Clayton-Oakes model
of example E(b). Or, of interest in survival analysis, test the assumption
of a proportional hazards regression model against some general family of
alternatives. Another rather different testing problem would involve test-
ing non-nested semiparametric models against one another, e.g. a Cox-
type regression model against a more classical linear regression model or
perhaps a semiparametric mixed regression model.

Asymptotics for estimates based on smoothing. Construction of efficient
estimates for many of the models discussed above require smoothing tech-
niques involving density or conditional expectation estimators. While the
asymptotics for such smoothing processes are available, they need further
development, study, and refinement to ease their systematic application to
the construction of efficient estimates in a wide range of semiparametric
models.

Robustness; connections and problems.  Efficient estimation in semi-
parametric models has many interesting connections with questions of
robustness. Just as classical robustness theory has focused on neighbor-
hoods of parametric models (often a one - sample location model), a gen-
eralization suggested by BICKEL and LEHMANN [8] concerns neighbor-
hoods of semiparametric models, which they called ‘nonparametric models
with natural parameters’. For example, are the partial likelihood estim-
tors for the Cox proportional hazards model robust in some appropriate
sense (with respect to the assumption of proportional hazards)? As more
experience is gained with efficient estimates for semiparametric models,
this more general type of robustness outlined by BICKEL and LEHMANN (8]
can begin to be considered. Many challenging problems remain.

Acknowledgments: 1 have profited from several helpful discussions concerning
semiparametric models with Peter Bickel. In particular, 1 learned of ‘method 2’
in Section 4 from him. I also owe thanks to Richard Gill for helpful comments
concerning Sections | and 3. R.D. Martin suggested example 2D(f).
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